CHAPTER 15 Interference and Diffraction

Chapter Opener

- **Tapping Prior Knowledge, TE** Review previously learned concepts and check for preconceptions about the chapter content.
- **Visual Concepts CD-ROM** This CD-ROM consists of multimedia presentations of core physics concepts. (BASIC)

SECTION 1 Interference

PACING

| Regular Schedule: with lab(s): N/A days | without lab(s): 1 days |
| Block Schedule: with lab(s): N/A days | without lab(s): 0.5 days |

OBJECTIVES

1. **Describe how light waves interfere with each other to produce bright and dark fringes.**
2. **Identify the conditions required for interference to occur.**
3. **Predict the location of interference fringes using the equation for double-slit interference.**

NATIONAL SCIENCE EDUCATION STANDARDS

UCP 1: Systems, order, and organization
UCP 2: Evidence, models, and explanation
UCP 3: Change, consistency, and measurements

FOCUS (5 MINUTES)

- **Overview** Review the objectives listed in the Student Edition. (GENERAL)

MOTIVATE (5 MINUTES)

- **Demonstration, Interference in Sound Waves, TE** This demonstration introduces students to interference patterns using sound waves from two coherent sources. (GENERAL)
- **Teaching Tip, p. 527, TE** Ask students to draw waves of the same wavelength that are out of phase by 45°, 90°, 135°.
- **Demonstration, Interference in a Ripple Tank, TE** This demonstration uses a ripple tank to demonstrate interference patterns using two types of point sources. (BASIC)
Lesson Plan Chapter 15 Intereference and Diffraction

TEACH (25 MINUTES)

__ **PowerNotes® Resources** Use the customizable presentation to help students master the concepts in this section. (GENERAL)

__ **Transparency 78, Interference Between Transverse Waves** This transparency illustrates constructive and destructive interference of waves.

__ **Transparency 79, Conditions for Interference of Light Waves** This transparency illustrates why interference patterns consist of light and dark fringes.

__ **Transparency Master 50A, Comparison of Waves in Phase and 180° out of Phase** This transparency master illustrates waves that are in phase and waves that are 180° out of phase.

__ **Transparency Master 51A, Path Difference for Light Waves from Two Slits** This transparency master illustrates the geometry involved with determining the path difference for light waves from two slits.

__ **Transparency Master 52A, Position of Higher-Order Interference Fringes** This transparency master illustrates a representation of the interference pattern formed by double-slit interference.

__ **Demonstration, How Distance Traveled Affect Interference, TE** This demonstration uses a sine-wave generator, amplifier, two speakers, and a tape measure to illustrate facts about constructive interference. (ADVANCED)

__ **Visual Strategy, Figure 7, TE** Students determine the size of the path difference if parts of the figure are assigned certain values. (GENERAL)

__ **Demonstration, Thin-Film Interference, TE** This demonstration shows that wavelength affects the position of interference fringes. (BASIC)

__ **Visual Strategy, Figure 8, TE** Students answer questions about the lines shown in the figure. (BASIC)

__ **Sample Set A, Interference, SE** This sample and practice problem set covers interference. (GENERAL)

__ **Classroom Practice, Interference, TE** Use this problem as a teamwork exercise or for demonstration at the board or on an overhead projector. (GENERAL)

CLOSE (10 MINUTES)

__ **Section Review, SE** Students answer review questions, critical-thinking questions, and interpreting-graphics questions that assess their understanding of the section objectives. (GENERAL)

__ **Study Guide, Interference, ANC** Use this worksheet to review the main concepts presented in the section. (GENERAL)

__ **Section Quiz, ANC** Use this quiz to assess students' understanding of the section. (BASIC)

OTHER RESOURCE OPTIONS
Lesson Plan Chapter 15 Interference and Diffraction

**Holt Online Learning** Students can access interactive problem-solving help and active visual concept development with the Holt Physics Online Edition available at my.hrw.com.

**Problem Workbook, Sample Set A: Interference, ANC** This worksheet provides an additional example problem and several practice problems that cover interference. (GENERAL)

**Problem Bank, Sample Set A: Interference, OSP** This worksheet provides a third example problem and several practice problems that cover interference. (GENERAL)

**SciLinks, Online** Students can visit www.scilinks.org to find internet resources related to the chapter content. Topic: Interference SciLinks Code: HF60806
SECTION 2 Diffraction

PACING
Regular Schedule: with lab(s): 3 days without lab(s): 2 days
Block Schedule: with lab(s): 1.5 days without lab(s): 1 days

OBJECTIVES
1. Describe how light waves bend around obstacles and produce bright and dark fringes.
2. Calculate the positions of fringes for a diffraction grating.
3. Describe how diffraction determines an optical instrument’s ability to resolve images.

NATIONAL SCIENCE EDUCATION STANDARDS
UCP 1: Systems, order, and organization
UCP 2: Evidence, models, and explanation
UCP 3: Change, consistency, and measurements
UCP 5: Form and function
SAI 1: Abilities to do scientific inquiry
SAI 2: Understanding about scientific inquiry
ST 1: Abilities of technological design
ST 2: Understanding about science and technology
HNS 1: Science as a human endeavor
SPSP 5: Science and technology in society

FOCUS (5 MINUTES)
__ Overview Review the objectives listed in the Student Edition. (GENERAL)

MOTIVATE (5 MINUTES)
__ Demonstration, Waves Bending Around Corners, TE This demonstration shows students wave diffraction in a ripple tank. (GENERAL)
__ Demonstration, Diffraction and Interference by a Single Slit, TE This demonstration shows students diffraction and single-slit interference in a ripple tank. (GENERAL)

TEACH (115 MINUTES)
__ PowerNotes® Resources Use the customizable presentation to help students master the
Lesson Plan Chapter 15 Interference and Diffraction

concepts in this section. (GENERAL)

__ Transparency 80, Diffraction of Light with Decreasing Slit Width This transparency shows that diffraction becomes more evident as the width of the slit is narrowed.

__ Transparency 81, Constructive Interference by a Diffraction Grating This transparency shows a schematic diagram of a section of a diffraction grating and how diffracted beams interfere with one another to produce a pattern.

__ Transparency 82, Function and Use of a Diffraction Grating in a Spectrometer This transparency illustrates that the position of the maximums in a pattern created by a diffraction grating are wavelength dependent and provides a diagram of the basic components of a spectrometer.

__ Transparency 83, Resolution of Two Light Sources This transparency shows that each of two distant point sources produces a diffraction pattern and that two point sources are barely resolved if the central maxima of their diffraction patterns do not overlap.

__ Transparency Master 53A, Destructive Interference in Single-Slit Diffraction This transparency illustrates why destructive interference occurs in single-slit diffraction.

__ Demonstration, Light Diffraction by an Obstacle: Poisson Spot, TE This demonstration uses a laser to show the bright spot of light produced by interference of diffracted light around the edge of an obstacle. (ADVANCED)

__ Conceptual Challenge, p. 535, SE These conceptual questions challenge students to apply the section content to real-world applications. (ADVANCED)

__ Demonstration, Effect of Slit Size on Diffraction Patterns, TE This demonstration uses two razor blades and a clear glass or plastic plate to show that light diffraction is more evident in narrow slits. (GENERAL)

__ Demonstration, Multiple-Slit Diffraction, TE This demonstration uses a laser and two optical gratings to show patterns formed by a diffraction grating and the effect of different grating line separations. (GENERAL)

__ Sample Set B, Diffraction Gratings, SE This sample and practice problem set covers diffraction gratings. (GENERAL)

__ Classroom Practice, Diffraction Gratings, SE Use this problem as a teamwork exercise or for demonstration at the board or on an overhead projector. (GENERAL)

__ Skills Practice Lab, Diffraction, SE Students find wavelengths of diffracted light. (GENERAL)

__ Datasheet, Diffraction, ANC Students use the datasheet to complete the in-text lab. (GENERAL)

CLOSE (10 MINUTES)

__ Section Review, SE Students answer review questions, critical-thinking questions, and interpreting-graphics questions that assess their understanding of the section objectives. (GENERAL)

__ Study Guide, Diffraction, ANC Use this worksheet to review the main concepts presented in the section. (GENERAL)
Lesson Plan Chapter 15 Interference and Diffraction

Section Quiz, ANC Use this quiz to assess students’ understanding of the section. (BASIC)

OTHER RESOURCE OPTIONS

Holt Online Learning Students can access interactive problem-solving help and active visual concept development with the Holt Physics Online Edition available at my.hrw.com.

Problem Workbook, Sample Set B: Diffraction Gratings, ANC This worksheet provides an additional example problem and several practice problems that cover diffraction gratings. (GENERAL)

Problem Bank, Sample Set B: Diffraction Gratings, OSP This worksheet provides a third example problem and several practice problems that cover diffraction gratings. (GENERAL)

SciLinks, Online Students can visit www.scilinks.org to find internet resources related to the chapter content. Topic: Diffraction SciLinks Code: HF60405
SECTION 3 Lasers

PACING
Regular Schedule: with lab(s): N/A days without lab(s): 1 days
Block Schedule: with lab(s): N/A days without lab(s): 0.5 days

OBJECTIVES
1. Describe the properties of laser light.
2. Explain how laser light has particular advantages in certain applications.

NATIONAL SCIENCE EDUCATION STANDARDS
UCP 1: Systems, order, and organization
UCP 2: Evidence, models, and explanation
UCP 3: Change, consistency, and measurements
UCP 5: Form and function
ST 1: Abilities of technological design
ST 2: Understanding about science and technology
HNS 1: Science as a human endeavor
SPSP 5: Science and technology in society

FOCUS (5 MINUTES)
__ Overview Review the objectives listed in the Student Edition. (GENERAL)

MOTIVATE (5 MINUTES)
__ Demonstration, Dancing Light, TE This demonstration shows students some characteristics of a laser beam. (ADVANCED)
__ Demonstration, Interference in Laser Light, TE This demonstration shows students interference of light waves with the same wavelength. (GENERAL)

TEACH (25 MINUTES)
__ PowerNotes® Resources Use the customizable presentation to help students master the concepts in this section. (GENERAL)
__ Transparency 84, Operation of a Laser This transparency illustrates how a laser works.
__ Transparency 85, Components of a Compact Disc Player This transparency depicts the internal mechanisms of a compact disc player.
__ Transparency Master 54A, Wave Fronts from Noncoherent and Coherent Light
Lesson Plan Chapter 15 Interference and Diffraction

Sources This transparency master compares incoherent light produced by an incandescent bulb with coherent light produced by a laser.

CLOSE (10 MINUTES)

- **Section Review, SE** Students answer review questions, critical-thinking questions, and interpreting-graphics questions that assess their understanding of the section objectives. (ADVANCED)

- **Study Guide, Lasers, ANC** Use this worksheet to review the main concepts presented in the section. (ADVANCED)

- **Section Quiz, ANC** Use this quiz to assess students’ understanding of the section. (GENERAL)

OTHER RESOURCE OPTIONS

- **Holt Online Learning** Students can access interactive problem-solving help and active visual concept development with the Holt Physics Online Edition available at my.hrw.com.

- **SciLinks, Online** Students can visit www.scilinks.org to find internet resources related to the chapter content. Topic: Lasers SciLinks Code: HF60853

- **SciLinks, Online** Students can visit www.scilinks.org to find internet resources related to the chapter content. Topic: Bar Codes SciLinks Code: HF60135
Lesson Plan Chapter 15 Intereference and Diffraction

END OF CHAPTER REVIEW AND ASSESSMENT

PACING
Regular Schedule: with lab(s): N/A days without lab(s): 2 days
Block Schedule: with lab(s): N/A days without lab(s): 1 days

__ Chapter Highlights, p. 547, SE This page summarizes the vocabulary terms and key concepts of the chapter.

__ Chapter Review, pp. 548–550, SE Students review the chapter material with review questions, conceptual questions, practice problems, and a mixed review section.

__ Alternative Assessment, p. 550, SE These projects challenge students to apply and extend concepts that they have learned in the chapter. (ADVANCED)

__ Graphing Calculator Practice, p. 551, SE Students program their graphing calculators to build a table for identifying the separations on a screen due to double-slit interference between the first three bright fringes. (GENERAL)

__ Standardized Test Prep, pp. 552–553, SE This feature helps students sharpen their test-taking abilities while reviewing the chapter content. (GENERAL)

__ Appendix D: Equations, p. 861, SE This appendix summarizes the equations introduced in the chapter.

__ Appendix I: Additional Problems, p. 891, SE This appendix provides additional mixed practice problems that cover the equations introduced in the chapter.

__ Study Guide, Mixed Review, ANC Students can use this worksheet to review the main concepts of the chapter in preparation for the chapter test. (GENERAL)

__ Holt PuzzlePro® Use this software to create crossword puzzles and word searches that make learning vocabulary fun.

__ Chapter Test A, ANC Assign this test for general-level chapter assessment. (GENERAL)

__ Chapter Test B, ANC Assign this test for advanced-level chapter assessment. (ADVANCED)

__ Test Generator Create a customized homework assignment, quiz, or test using the